當前位置:首頁 > 成功案例
一、研究成就與亮點本研究通過將發(fā)光單元引入聚合物受體的骨架中,成功降低了全聚合物太陽能電池(all-PSCs)中的非輻射能量損耗(?Enr),從而顯著提高了器件的開路電壓(Voc)和功率轉換效率(PCE)。與基于PM6:PYDT的器件相比,基于PM6:PYDT-CzP-9的all-PSCs的?Enr從0.188 eV降低到0.183eV。這種降低歸因于電致發(fā)光外量子效率(EQEEL)的提高。PM6:PYDT-CzP-9器件的EQEEL比基于PM6:PYDT的器件提高了18%(8.4×10?4vs
一. 研究成就與亮點本研究通過在寬帶隙鈣鈦礦中引入硫氰酸銣(RbSCN),有效提升了器件的效率和穩(wěn)定性。主要亮點如下:l 實現(xiàn)了24.3%的單結寬帶隙鈣鈦礦太陽能電池(PSC)效率,開路電壓(VOC)高達1.3V(VOC損耗僅為0.36V),為同類器件的最高報導效率。l 構建了超過30%效率和1.97V VOC輸出的晶硅/鈣鈦礦雙端串聯(lián)電池,展現(xiàn)出優(yōu)異的疊層器件性能。l RbSCN添加劑的引入有效調(diào)控了鈣鈦礦晶粒結晶,提升了材料質(zhì)量,降低了非輻射復合,并抑制了離子遷移和相分離,為高性能
研究成就與亮點l 本研究利用雙層自組裝單分子層(Double-layer self-assembled monolayer, D-2P)結構,成功調(diào)節(jié)了寬帶隙鈣鈦礦薄膜中鹵素元素的相分布,使其趨于均勻。l 借助D-2P結構誘導的自下而上模板化結晶,有效抑制了非輻射復合,進而降低了開路電壓(Open-circuit voltage, Voc)損耗。l 基于此技術,制備的寬帶隙鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)實現(xiàn)了20.80%的功率轉換效率(經(jīng)第三方
研究成就與看點本研究成功開發(fā)了一種名為「定制二維鈣鈦礦層」(TTDL) 的新型界面層,應用于廣帶隙 (WBG) 鈣鈦礦太陽能電池 (PSC),有效提升了組件性能,特別是在平方公分規(guī)模的電池上。TTDL由F-PEA和CF3-PA混合而成,其中 F-PEA 形成二維鈣鈦礦,降低接觸損耗并提升均勻性,而 CF3-PA 則增強電荷提取和傳輸。藉由 TTDL 的引入,研究團隊實現(xiàn)了 1.77-eV WBG PSC 在平方公分規(guī)模下高達 1.35 V 的開路電壓和 20.5% 的效率。將此 WB
研究成就與看點本研究的主要亮點在于利用異構雙銨鹽鈍化劑 cis-CyDAI2 和 trans-CyDAI2 處理寬帶隙鈣鈦礦活性層表面,發(fā)現(xiàn)異構體與鈣鈦礦表面呈現(xiàn)兩種不同的交互作用行為。其中 cis-CyDAI2 鈍化處理可有效減少寬帶隙鈣鈦礦太陽能電池 (pero-SC) 的準費米能級分裂 (QFLS) 與開路電壓 (Voc) 的不匹配,并將其 Voc 提升至 1.36 V,進而實現(xiàn) 18.3% 的高效率,并應用于鈣鈦礦/有機疊層太陽能電池 (TSC),最終實現(xiàn) 26.4% 的高轉換效率 (經(jīng)
研究成就與看點:本研究挑戰(zhàn)了基于連續(xù)模式測試評估鈣鈦礦太陽能電池 (pero-SCs) 運行壽命的普遍方法,發(fā)現(xiàn)高效 FAPbI3 鈣鈦礦太陽能電池在自然晝夜循環(huán)模式下的衰減速度實際上要快得多。[1] 研究揭示,關鍵因素是運行過程中鈣鈦礦熱脹冷縮引起的晶格應變,這種效應在連續(xù)照明模式下逐漸放松,但在循環(huán)模式下同步循環(huán)。循環(huán)模式下的周期性晶格應變會導致運行過程中深陷阱積累和化學降解,從而降低離子遷移勢并縮短器件壽命。 為了解決這一問題,研究人員引入了苯基硒化氯 (Ph-Se-Cl) 來調(diào)節(jié)晝夜循環(huán)